管道支架用于地上架空敷设管道支承的一种结构件
分为固定支架、滑动支架、导向支架、滚动支架等。
管道支架在任何有管道敷设的地方都会用到,又被称作管道支座、管部等。它作为管道的支撑结构,根据管道的运转性能和布置要求,管架分成固定和活动两种。设置固定点的地方成为固定支架,这种管架与管道支架不能发生相对位移,而且,固定管架受力后的变形与管道补偿器的变形值相比,应当很小,因为管架要具有足够的刚度。设置中间支撑的地方采用活动管架,管道与管架之间允许产生相对位移,不约束管道的热变形。传统电火花堆焊修复机采用火花瞬间高频放电原理,将镍基焊材或者专用焊材离子态之后瞬间作用于工件表面,使焊材和工件以冶金方式熔合为一体。工件表面在整个焊补过程中产生热量极小。焊枪采用旋转电极,焊丝直径从1.6-3.mm不等。适合于铸造缺陷的修复。且该机器在功率与放电频率的设置上,可以做到表面涂覆强化。可修补钢铁、铜、铝等各类金属。优点:安装方便,操作简单,一般人员稍加培训即可操作。焊补强度高,焊补部位无退火、无裂纹、无变形、无内应力产生,焊点处不会产生加工硬点,修补速度相对于贴片机来说比较快,修复的精度比较高,且可以通过X光探伤、渗透、拉伸等测试。
分类
1、按荷载分为三个等级:特轻级(Q)、中级、特重级(Z)。在每一个荷载等级中,包含轴向滑动、双向滑动、导向滑动、双导向滑动四种结构类型。
2、按支架的材料可分为钢结构、钢筋混凝土结构、砖木结构等。
3、按用途可分为活动支架(允许管道在支架上有位移的支架)和固定支架(固定在管道上用的支架)。固定支架用在不允许管道有轴向位移的地方,常用的几种固定支架如图所示。
活动支架分为滑动支架、导向支架和滚动支架。我们平常看到的像GB3,GB5783等等都是强制性的标准。以上几种标准除了一些基本尺寸如头部对边、头部厚度等的不同以外,主要的是螺纹部分的不同。GDIN、JIS等的螺纹都有是以MM(毫米)为单位,统称为公制螺纹。另像ANSASME等的螺纹是以英寸为单位的称为美标螺纹。除了公制螺纹和美制螺纹外还有一种BSW英制标准,其螺纹也是以英寸为单位,俗称惠氏螺纹。公制螺纹是以MM(毫米)为单位,它的牙尖角为6度。
安装方法
管道支架的安装方法有:
1、栽埋式支架安装
2、焊接式支架安装
3、膨胀螺栓法支架安装
4、抱箍法支架安装
5、射钉法支架安装
施工要求
国标《建筑给排水及采暖工程施工质量验收规范》GB50242-2002中对管道支架有如下要求:
第3.3.7条 管道支、吊、托架的安装,应符合下列规定:
1、位置正确,埋设应平整牢固;
2、固定支架与管道接触应紧密,固定影牢固;
3、滑动支架应灵活,滑托与滑槽两侧应留有3至5毫米的间隙,纵向移动量应符合设计要求;
4、无热伸长管道的吊架、吊杆应垂直安装;
5、有热伸长管道的吊架、吊杆应向热膨胀的反方向偏移;
6、固定在建筑结构上的支、吊架不得影响结构的安全
第3.3.8条 钢管水平安装的支、吊架间距不应大于下表的规定:
支架间距
1、一般管道固定支架间距的确定原则
①、管道固定支架是用来承受管道因热胀冷缩时所产生的推力,为此,支架和基础需坚固,以承受推力的作用。
②、固定支架间距的大小直接影响管网的经济性,因此,要求固定支架布置合理,使固定支架允许间距加大以减少管架数量。
2、固定支架间距必须满足的条件
①、管道的热伸长量不得超过补偿器的允许补偿量;
②、管段因热膨胀产生的推力不得超过固定支架所能承受的允许推力值;
③、不宜使管道产生纵向弯曲。
3、热力管道直管段允许不装补偿器的长度。在深孔加工过程中,经常出现被加工件尺寸精度、表面质量以及刀具的寿命等问题,如何减少甚至避免这些问题的产生,是我们目前亟待解决的问题。下面就来介绍一些生产中比较常见的深孔加工刀具问题。存在问题:孔径增大,误差大1)产生原因铰刀外径尺寸设计值偏大或铰切削刃口有毛刺;切削速度过高;进给量不当或加工余量过大;铰刀主偏角过大;铰刀弯曲;铰切削刃口上粘附着切屑瘤;刃磨时铰切削刃口摆差超差;切削液选择不合适;安装铰刀时锥柄表面油污未擦干净或锥面有磕碰伤;锥柄的扁尾偏位装入机床主轴后锥柄圆锥干涉;主轴弯曲或主轴轴承过松或损坏;铰刀浮动不灵活;与工件不同轴以及手铰孔时两手用力不均匀,使铰刀左右晃动。解决措施根据具体情况适当减小铰刀外径;降低切削速度;适当调整进给量或减少加工余量;适当减小主偏角;校直或报废弯曲的不能用的铰刀;用油石仔细修整到合格;控制摆差在允许的范围内;选择冷却性能较好的切削液;安装铰刀前必须将铰刀锥柄及机床主轴锥孔内部油污擦净,锥面有磕碰处用油石修光;修磨铰刀扁尾;调整或更换主轴轴承;重新调整浮动卡头,并调整同轴度;注意正确操作。存在问题:孔径缩小1)产生原因铰刀外径尺寸设计值偏小;切削速度过低;进给量过大;铰刀主偏角过小;切削液选择不合适;刃磨时铰刀磨损部分未磨掉,弹性恢复使孔径缩小;铰钢件时,余量太大或铰刀不锋利,易产生弹性恢复,使孔径缩小以及内孔不圆,孔径不合格。解决措施更换铰刀外径尺寸;适当提高切削速度;适当降低进给量;适当增大主偏角;选择润滑性能好的油性切削液;定期互换铰刀,正确刃磨铰刀切削部分;设计铰刀尺寸时,应考虑上述因素,或根据实际情况取值;作试验性切削,取合适余量,将铰刀磨锋利。存在问题:铰出的内孔不圆1)产生原因铰刀过长,刚性不足,铰削时产生振动;铰刀主偏角过小;铰切削刃带窄;铰孔余量偏;内孔表面有缺口或交叉孔;孔表面有砂眼、气孔;主轴轴承松动,无导向套,或铰刀与导向套配合间隙过大以及由于薄壁工件装夹过紧,卸下后工件变形。解决措施刚性不足的铰刀可采用不等分齿距的铰刀,铰刀的安装应采用刚性联接,增大主偏角;选用合格铰刀,控制预加工工序的孔位置公差;采用不等齿距铰刀,采用较长、较精密的导向套;选用合格毛坯;采用等齿距铰刀铰削较精密的孔时,应对机床主轴间隙进行调整,导向套的配合间隙应要求较高或采用恰当的夹紧方法,减小夹紧力。存在问题:孔的内表面有明显的棱面1)产生原因铰孔余量过大;铰刀切削部分后角过大;铰切削刃带过宽;工件表面有气孔、砂眼以及主轴摆差过大。
T型管托(焊接型)J1、T型管托(管夹型)J2、T型管托(加筋焊接型)J3、T型管托(加筋焊接型)J4、H型管托(焊接型)J5、H型管托(带管夹)J6、高压减振管托J7、管托(保冷管用)J8、管托(保冷管用)J9、座式T型管托优质厂家 T型管托的价格 管托(用于大型管道)J10、鞍式管托J11、管托(带聚四氟乙烯垫板型)J12、振动管道用管托J13、立管支座J14、T1.单板整定弹簧组件、T2.双板整定弹簧组件、T3.上下方整定弹簧组件、T4.支架整定弹簧组件、T5.横担整定弹簧组件、弹簧支吊架、弹簧吊架、支吊架、吊架、可变弹簧支吊架、整定弹簧组件、保温人孔、风门、圆风门、方风门、管部、根部、电动锁气器、传动装置、碟簧支吊架、支座装置、花兰螺丝、吊耳、烟风煤粉管道零部件(六道零部件)等,我公司是一家专业生产管道配件的厂家,为国内各大电厂及化工、纺织、城市给排水等行业供应产品欢迎各界人士前来考察洽谈。
管托的分类
管托也分为保温(保冷)与不保温的
不保温的直接被叫做support 也就用在常温管道;
保温(保冷)的就被称作为pipe-shoe
无论是否保温都可以分为滑动,固定,导向,不管选择那一种,管托是不变的,只是在管托与钢结构或支架的连接改变。
通常滑动和导向型式的管托采用四氟板与四氟板滑动摩擦,或者白钢板与四氟板滑动摩擦,以减小摩擦系数,降低管道在变形或移位时,管架对管道的束缚应力,并且尽量避免管托与管道之间的相对位移
有A1U形螺栓,A2U形螺栓(带角钢),A3导向管卡,A4紧固管卡,A5基准型双孔螺栓管夹,A6重型双螺栓管夹,A7三螺栓管夹(保温管用),A8三螺栓管夹(支托用),A9双排螺栓管夹,A12管卡(保冷管用),A10四螺栓管夹,A11双排螺栓压紧管卡,A13双螺栓管卡(保冷管用),A14四螺栓管卡(保冷管用),A15双头螺纹吊杆,A16吊环型吊杆,A17松紧螺母,A18角形吊耳,A19U形吊耳,A20倒U形吊耳(焊接型),A21倒U形吊耳(吊杆型),A22板式吊耳,A23垫板,A24支腿加强板,A25连接板
一、用途与原理
弹簧支吊架主要用于电厂汽水管道或锅炉设备、在运行中产生热位移及其设备装置上。根据管道受力情况计算确定的弹簧支吊架工作和热位移要求,本厂将弹簧支吊架按照设计荷载进行整定:即弹簧预压并所定冷态荷载位置上;同时标上冷态时的理论理论工作位置。
弹簧支吊架在出厂前制造厂进行了整定,当安装了到管道和设备上后,作有关螺纹调整,将所定销脱开,这时弹簧的实际承载就是设计所要求的冷态荷载。小型客厅尤其是走道部位的家具,可以选择那种下按后才会弹起的封闭式拉手。一是考虑到这里的柜门开启的频率较低,其次是为了保证人的走动不至于发生牵扯。书房或工作室的家具可以模仿写字楼的做法,挑选简洁方正的拉手。卫浴间的柜门一般不多,适宜挑选微形单头圆球式的陶瓷或有机玻璃拉手,其色泽或材质应与柜体相近。有时候,寻觅到具有与柜体相同造型或曲线的拉手,会使家具与拉手的关系显得特别协调。拉手安装的位置也是很有讲究的。
二、型号、种类
可变式弹簧支吊架有四大系列,主要是由西北电力设计院设计的T1、T2、T3、T4、T5型系列、华东电力设计院设计的TH1、TH2、TH3型系列、TD系列(JB/J8130.2-1999)和化工设计院设计的VS系列,其系列的基本特性相同,承载力为20daN-21000daN。结构形式主要有悬吊式、支承式和并联悬吊支承式。
(三)、T、TH结构形式和型号表示方法:
本吊架根据安装形式分为中间连接吊架弹簧TH1上下连接吊架弹簧TH2、支架弹簧TH3三种型号。以前的引擎每个汽缸只有一个进气门和一个排气门,这样的设计较简单成本低,车辆的低速反应好,不过在高转速时效率较差,后来为了增进进、排气效率,提升车辆的性能,现今大部份的引擎都采用多气门设计,常见的是每汽缸4气门的设计,以四汽缸引擎为例,每汽缸4气门四个汽缸就是16气门,也就是我们常在杂志或网络上看到的16V。气门的动作是透过曲轴连结凸轮轴的皮带或金属链条带动凸轮轴,再由凸轮轴的突起部位推动气门往下开启,来进行进气和排气的动作,至于关闭的动作则是交给气门弹簧负责。