详细介绍: 监控线材的选用以及铺设线材选型
1、视频线
摄像机到监控主机距离≤200米,用RG59(128编)视频线。
摄像机到监控主机距离>200米,用SYV75-5视频线。
2、云台控制线
云台与控制器距离≤100米,用RVV6×0.5护套线。
云台与控制器距离>100米,用RVV6×0.75护套线。
3、镜头控制线
采用RVV4×0.5护套线。
4、解码器通讯线
应采用RVV2×1屏蔽双绞线
5、摄像机电源线
若系统有20台普通摄像机,摄像机到监控主机的平均距离为50米,则应使用BVV6m2铜芯双塑线作电源主线,不同距离所使用的电源线见如下表:
摄像机到监控主机的平均距离
34~50m
21~33m
≤20m
电源线规格(2线)
6m2
4 m2
2.5m2
监控系统线路铺设
1、视频线敷设注意事项
1.1、若摄像机到监控主机(图像处理器、矩阵控制主机或数码录像机)的距离少于200米,可用RG59视频线,若超过200米,应该采用SWY-75-5视频线,以保证监控图像的质量。
1.2、对于安装在电梯内的摄像机,在电梯井内布线应采用星铁槽并接地处理,以减少电梯电机启动时对视频信号造成的干扰。
1.3、如果摄像机安装在室外(如大院门口或停车场等),线路需要在室外走线或通过架空钢缆走线,条件允许的情况下要安装视频避雷器(因为加装防雷设备会造成工程总造价的增加),即分别在摄像机端和监控主机端各安装1个视频避雷器,而且每个视频避雷器均要接地(室外摄像机要单独打地线,监控室的视频避雷器可统一接地),以防止感应雷对设备造成损坏。
2、控制线敷设注意事项
2.1、在模拟监控系统中,若安装配云台变焦镜头的摄像机,并采用云台镜头控制器进行控制,控制线的选择应根据摄像机与云镜控制器的距离确定。当距离少于100米时,云台控制线可采用RVV6×0.5护套线,;当距离大于100米时,云台控制线应采用RVV6×0.75护套线,镜头控制线均采用RVV4×0.5护套线。
如果该模拟监控系统是通过矩阵控制主机对云台和镜头进行控制,一般需要用到解码器,控制线路敷设可参考所用矩阵控制主机的技术要求。
2.2、在数码监控系统中,若安装配云台变焦镜头的摄像机,则需要通过解码器对云台和镜头进行控制。解码器一般安装在摄像机旁,解码器与数码录像机采用RS485总线进行通信。布线应采用RVVP2×1屏蔽双绞线从数码录像机先引至距离最近的解码器1,然后由解码器1引至解码器2 ……现在的16路数码录像机最多可接16台解码器,而RS485通讯线的总长度最长可达1200米。接线示意图如下:见基础知识内的相关帖。
解码器有AC 220V和AC 24V两种供电类型,若选用AC 24V解码器,则一般由AC 24V变压器统一供电。特别需要注意的是,由于有些解码器输出的DC 12V电源有干扰,用于摄像机供电时会对图像造成一定的影响,因此需要统一对摄像机(12V)供电。
3、摄像机电源线敷设注意事项
市面上采用DC 12V供电的普通摄像机工作电流约为200~300mA,一体化摄像机为350~400mA。如果摄像机的数量较少(5台以内)且摄像机与监控主机的距离较近(少于50米),每台摄像机可单独布RVV2×0. 5电源线到监控室并用小型变压器供电。如果摄像机的数量较多,则应采用大功率的12V直流稳压电源集中供电。
在方案设计和施工过程中,要考虑到所有摄像机的总功率和由传输线路所造成的电压降(俗称“线损”,规格为1m2的铜导线每100m的电阻是1.8Ω)。对于一幢楼的监控,施工时一般用2条2.5~6m2的铜芯双塑线作为电源的主干由监控室引至线井,并沿线井走至各摄像机所在楼层的线井。对于楼层各摄像机的供电,可由该层线井引1条RVV2×1或RVV2×1.5(若该层的摄像机数量超过6台)电源线给摄像机供电,或用RVV2×0.5护套线一一对应供电。
监控常用线缆类别和型号的区分
视频线、射频线、屏蔽与非屏蔽、信号线、控制线等等,各种型号,初入行者经常被搞混,下面是几个常用型号的区分: RVV 与 KVV RVVP 与 KVVP 区别: RVV 和RVVP 里面采用的线为多股细铜丝组成的软线,即RV线组成。 KVV 和KVVP 里面采用的线为单股粗铜丝组成的硬线,即BV线组成。 AVVR 与 RVVP 区别: 东西一样,只是内部截面小于0.75平方毫米的名称为AVVR, 大于等于0.75平方毫米的名称为RVVP.
监控项目中线缆的好坏鉴别
线缆的好坏鉴别,真正的检测是需要专门的设备和仪器。而这些设备和仪器又是设计和工程单位不具备的。工程实际中,怎样鉴别视频线的好坏呢:
1. PVC护套:表面能看出压紧里面编网有规律的 “不平度”,说明加工工艺好,不会产生相对滑动,是好电缆。外观光滑,看不出压紧编网的“不平度”,用手捏护套有松动感,是差电缆;
2. 检查屏蔽层编网:编数是否够?铜材编网,检查可焊性,镀锡铜线刮看里面是不是铜线,铝镁合金线的硬度明显大于铜线;编网稀疏,分布不均匀,与绝缘层包裹不紧等是差电缆;
3. 检查芯线:直径——SYV电缆为0.78-0.8mm,SYWV电缆为1.0mm;近来出现了一种SYV75-5芯线直径是1.0mm的电缆,这种电缆的特性阻抗,肯定不是75欧姆,不应用到75欧姆传输系统中;
4. 检查芯线与绝缘层的沾合力:斜向切开绝缘层,按剥离方向拉开芯线,看芯线和绝缘层有没有沾合工艺材料;好电缆有较大的沾合力,差电缆没有沾合;
5. 纵向抗拉实验:取一米电缆,分层剥开芯线,绝缘层,屏蔽层,外户套,各留10公分长。方法是:两只手分别握电缆的相邻两层,向相反方向拉动;好电缆一般力量拉不动,差电缆不费大力就可以轻松拉出来——电梯电缆这一条十分重要,不少所谓“电梯专用电缆”都存在这方面的问题;
二、 传输性能测试:
视频线,顾名思义,是用来传输视频信号的传输线。既然是传输视频信号,起码就要了解传输线在0-6M频带范围的传输特性,或者说,传输性能。这里主要谈一点“示波器测量方法”,共参考,因为示波器是工程商必备“武器”,资质审查的必检设备之一;以下叙述是建立在已经能够熟练使用示波器的基础上的。
1. 彩色摄像机视频信号可以作为 “标准视频信号源”:测试工程用的摄像机视频输出,在75欧姆负载上的幅度应是1Vp-p,即行同步头的底端到视频信号最高的白电平“峰——峰值”;注意行同步头幅度为“-0.3V”,色同步头(4.43M正弦波脉冲)幅度为0.3Vp-p;选好示波器灵敏度,打到幅度校准状态。选测一部指标较好的摄像机作为“视频源”;
2. 测试电缆尽量取长一点,以减少测量误差,如1000米,电缆中间接头一定用“F型接头”和同轴双通(有线电视器材),不要用焊接方法,因为焊接方式破坏了电缆的同轴性和特性阻抗的连续性。
3. 测量电缆的直流电阻数据:如SYV75-5电缆1000米,直流电阻芯线为35-40欧姆,外屏蔽层电阻1000米为24-36欧姆(屏蔽层编数不同,电阻区别很大);SYWV75-5电缆1000米,直流电阻芯线为18-22欧姆,外屏蔽层电阻1000米为24-36欧姆;积累这方面的资料很有用,不仅可以判断电缆用材质量,而且用来对工程布线、穿管质量进行检查,如顾人穿管时,把线拉断,阻值变大,视频信号变弱,不该出现的干扰也出现了,这类“事故”发生概率十分高,却又经常被忽视;
4. 测量电缆高低频衰减特性:在末端测量行头部头和色同步头幅度,以0.3V为0db基准,计算衰减量,行同部头代表低频衰减,色同步头代表4.43M高频衰减,——如:测得1000米行同步头为0.15V,按照20log计算衰减倍数的db数为“-6db/1000m”,测得4.43M色同步头1000米衰减后的幅度是30mv,即1/10倍,衰减为-20db/1000m;用这个方法就可以准确的掌握不同电缆的传输质量,并且对“频率失真(高低频衰减差)”有了直观的概念,你可以比较准确的测出相同型号和结构的SYV和SYWV电缆的区别和性能好坏,比较出不同厂家产品的区别和性能好坏,也可以比较出同一厂家不同批次产品的变化来;
5. 上述方法还可以检测视频传输系统和设备的性能:如工程中每一路同轴视频电缆的传输特性,光端机的传输特性(可以测出好坏,不要以为都那么理想),射频传输、微波传输特性,双绞线的传输特性,视频分配器的分配特性,矩阵主机的切换特性,要特别注意当多路输出同时切换同一路输入信号时,如果发现切换路数越多衰减越大,就不对了,应该不变,测了以后你就会掌握不少不合格产品了;
6. 观察场信号,看看场同步位置失真大不大(平不平)——应该很平; 同时还可以用示波器察看低频干扰情况:如场信号有慢变起伏波动,是50/100周干扰,有很多 “茅草”跳动,大多是变频谐波干扰,把远端摄像机断开,电缆远端内外导体短路,在末端可以用示波器直接观察干扰波形和强度;这个方法也可以检查和考验抗干扰设备的真实性能。 |