详细介绍:
现货供应原包POM Tarnoform 500 GF2
page 1 of 2 MATERIAL DATA SHEET LG/ 02.2010 EDITION 6 TARNOFORM? 300 PROPERTIES STANDARD ISO 11357-1-3 1183 1133 1133 62 62 294-4 527-1,-2 527-1,-2 527-1,-2 527-1,-2 178 178 179-1 179-1 179-1 179-1 180 2039-1 306 75-1,-2 11359-1/-2 IEC 60216 UL94 US-FMVSS 302 IEC 60093 IEC 60093 IEC 60243-1 IEC 60250 IEC 60250 IEC 60112 TEST CONDITIONS 10°C/min. 190°C/2,16kg 190°C/2,16kg 23°C/50%RH 23°C/sat. 60x60x2 50mm/min 50mm/min 50mm/min 1mm/min 2mm/min 2mm/min 1eU 1eU 1eA 1eA 358 N 50N 1,8 MPa 23°C - 55°C 20000 h 5000 h 3,2 mm thickness d≥1mm 2mm 1MHz 1MHz solution A UNIT TYPICAL DATA PHYSICAL Melting point; DSC Density Melt volume-flow rate (MVR) Melt mass-flow rate (MFR) Humidity absorption Water absorption Linear shrinkage II MECHANICAL Tensile strength at yield Elongation at yield Elongation at break Tensile E-modulus Flexural strength Flexural modulus Charpy impact strength Charpy impact strength (-30°C) Charpy notched impact strength Charpy notched impact strength (-30°C) Izod notched impact strength Ball indentation hardness THERMAL Vicat softening point Heat deflection temperature Coefficient of linear thermal expansion II Temperature index TI Limit of temperature, at few hours operation FLAMMABILITY Flammability Burning Rate ELECTRICAL Surface resistivity Volume resistivity Dielectric strength Dielectric constant Dissipation factor Comparative tracking index CTI ? ?xcm kV/mm V 10 15 10 25 3,8 600 14 °C 3 g/cm 3 cm /10min g/10min % % % MPa % % MPa MPa MPa 2 kJ/m 2 kJ/m 2 kJ/m 2 kJ/m 2 kJ/m MPa °C °C E-4/°C °C °C °C Class mm/min 167 1,41 8 9 0,2 0,8 2,0 62 10 50 2800 64 2500 200 180 6 5,5 6 145 150 115 1,1 100 HB <100 Product nomenclature acc. ISO 9988-1: POM-K, M-GNR, 03-002 All data for natural and black coloured material (unless indicated otherwise). Properties measured at 23°C (unless indicated otherwise). \ page 2 of 2 TARNOFORM? 300 CHARACTERISTICS Tarnoform? 300 - is the standard, fast cycling injection-moulding grade, good chemical resistance, exhibit low mould deposit. Destined for injection moulding for production of parts used in automotive, machine parts, appliances, household articles, electronic, building and furnishes industries, etc. Melt temperature: 170-230°C, Injection pressure: 60-120 MPa, Injection speed: slow - medium Mould temperature: 60-120°C, optimum about 90°C, for precision parts up to 120°C Tarnoform? 300 is delivered as ready for processing, without need of drying. If product has been exposed to a damp atmosphere or has been in contact with water, it has to be dried at 100° C to 120° C in circulating air oven for about 2- 4 hours. Processing moisture content should be : < 0,10 %, Standards colours: natural, black, other colours on request. APLICATIONS PROCESSING DRYING COLOUR RECYCLING Clean, milled, not contained degradated polymer, postproduction wastes could be reused after mixing with fresh plastic. The addition level of milled scraps may reach up to 10%. It is recommended to use pre-dry milled scraps. Available in PE bags containing 25 kg of granules and next put to 1000 kg pallets Available in octabins (big-bag containers) containing up to 1000 kg of granules PACKAGING 补牙时,牙齿材料到底发生了什么变化?
我们补牙时所用的材料有树脂的,有银汞合金的,这是目前使用最为广泛的两种牙齿修补材料。此次我们就来详细说说这两种材料。
一、树脂材料
树脂,广义上其实就是塑料。树脂材料补牙,说白了就是在你的牙里做一个化学反应,反应类型是聚合反应。其中牙洞是反应容器,补牙树脂原材料的主要成分是单体(次要成分是光引发剂、无机添加剂等),产生的固体是产物聚合物。
1. 单体
目前牙科材料的单体结构包括但不限于如下结构:
其实就是双甲基丙烯酸酯结构了,用于聚合的就是那两个双键官能团(术语叫双官能度单体)。
2. 聚合
机理:自由基聚合,总体来说聚合分为:引发、增长、终止三个过程。
引发:就是让体系中产生自由基,补牙树脂中含有少量的引发剂成分,目前主要就是用樟脑醌加上胺类物质。在正常情况下,这些光引发剂很稳定,但在光照情况下,这些引发剂会迅速发生变化产生自由基,自由基引发单体进行聚合。这下大家明白补牙时候为什么医生要拿一个紫光灯去照射牙齿了吧。
增长:就是聚合反应持续进行,单体转化率、聚合度持续增加。我们上述已经介绍过,单体都是双官能度的,不可避免发生分子间的交联反应,体系从粘稠的单体变为弹性的胶体,这时候发生的是凝胶化,聚合度进一步增加,就变成硬性的固体,这时候发生的是玻璃化。整个的这样的过程就是“变硬”。
终止:就是在聚合反应后期,由于单体已经消耗差不多了,或者是由于体系的固化程度已经很高,残存的单体已经游不动了,自由基便通过偶合终止或者歧化终止被反应掉,当然不排除有些自由基在无氧无水的微环境中会长期存留。
二、银汞合金材料
银汞实际上是一种合金。听名字你就明白了,汞是其中的一种成分。那么,这种补牙材料对人体是否有毒性呢?其实不用担心,虽然汞本身是有毒的,但是做成合金后的泄漏量小的可怜。并且在人群中广泛使用之前已经进行过充分的论证与毒性评估。但是目前来讲,银汞合金补牙材料已经逐步淘汰,主要是基于以下原因:
颜色不好看,非常影响美观。
没有粘结性。
金属与牙齿的导热性差别较大,导致牙齿敏感。
参考资料:
1. Stansbury, J. W., Curing dental resins and composites byphotopolymerization. Journal of Esthetic & Restorative Dentistry 2000,12 (6), 300–308.
2. Peutzfeldt, A., Resin composites in dentistry: the monomer systems. European Journal of Oral Sciences 1997, 105 (2), 97–116.
3.Moszner, N.; Salz, U., New developments of polymeric dental composites. Progress in Polymer Science 2001, 26 (4), 535-576.
4. Leprince, J. G.; Palin, W. M.; Hadis, M. A.; Devaux, J.; Leloup, G.,Progress in dimethacrylate-based dental composite technology and curingefficiency. Dental Materials 2013, 29 (2), 139-156.
|