详细介绍:
PEI 基础创新塑料(美国) 9075-BK1A151,价格合理,诚信经营,可全国供货(广东省内免费送上门)。支持物流,快递和货运;支持现金,银行转账交易。
东莞市广业塑胶原料有限公司专业销售原装进口塑胶原料,原厂原包,假一赔十,本司货源稳定充足,发货准时,交期和质量均有保障!是专业塑胶原料供应商!!!可提供COA,SMDS,SGS,COC,UL黄卡和物性表及加工参数。
PEI 基础创新塑料(美国) 9075-BK1A151特性:
PEI 基础创新塑料 9075-BK1A151 真空泵叶轮 蒸镏器玻璃接头
PEI 基础创新塑料(美国)
9075-BK1A151
PEI 基础创新塑料(美国)
9075-BK1A151
PEI 基础创新塑料(美国)
9075-BK1A151
PEI 基础创新塑料(美国)
9075-BK1A151
PEI 基础创新塑料(美国)
9075-BK1A151
PEI 基础创新塑料(美国) 9075-BK1A151 其他型号报价:
PEI
|
基础创新塑料(美国)
|
2400
|
120000
|
PEI
|
基础创新塑料(美国)
|
2400-7301
|
50000
|
PEI
|
基础创新塑料(美国)
|
2400-7301 BK
|
115000
|
PEI
|
基础创新塑料(美国)
|
2410-7301
|
115000
|
PEI
|
基础创新塑料(美国)
|
2412-1000
|
116000
|
PEI
|
基础创新塑料(美国)
|
2412EPR-1000
|
115000
|
PEI
|
基础创新塑料(美国)
|
3451-7301
|
115000
|
PEI
|
基础创新塑料(美国)
|
3452-1000
|
115000
|
PEI
|
基础创新塑料(美国)
|
3452-701
|
115000
|
PEI
|
基础创新塑料(美国)
|
4000-7401
|
10000
|
PEI
|
基础创新塑料(美国)
|
4001-1001
|
120000
|
PEI
|
基础创新塑料(美国)
|
4001-1100
|
100000
|
PEI
|
基础创新塑料(美国)
|
4001-7402
|
75000
|
PEI
|
基础创新塑料(美国)
|
4211-7401
|
150000
|
PEI
|
基础创新塑料(美国)
|
6202-1000
|
100000
|
PEI
|
基础创新塑料(美国)
|
8015-7147
|
60000
|
PEI
|
基础创新塑料(美国)
|
8015-81004
|
99000
|
PEI
|
基础创新塑料(美国)
|
8015-8114
|
99000
|
PEI
|
基础创新塑料(美国)
|
8015-BR3218
|
99000
|
PEI
|
基础创新塑料(美国)
|
801-7701
|
110000
|
PEI 基础创新塑料(美国) 9075-BK1A151
PEEK在339.4℃ 出现熔融吸热峰;随着共混物中PEI比例的增加,熔点和熔融峰均变小。分析认为,非晶聚合物PEI对结晶聚合物PEEK起到稀释剂的作用,使PEEK的晶片变薄 j,从而使其熔点降低,熔融峰减小。表1中的熔融焓是以共混物中PEEK的质量计算Esj。由表1可以看出,随PEI用量的增加,PEEK的熔融焓呈现先增加后减小的趋势;当PEI质量分数为50%时,其值最大,即此时PEEK的结晶度最高。聚丁烯一对苯二酸酯/双酚A一聚羟基醚共混物和聚环氧乙烷/双酚A一聚羟基醚共混物也出现此种现象。这对于含一种结晶组分的相容共混体系来说很常见;由于非晶稀释剂组分的存在,使共混物层间区的流动性增加,易于排成有序状态,从而使结晶度增加-9 ;但同时, 由于PEI起稀释剂作用,其用量过多会破坏PEEK结晶。因此,两者相互竞争, 当PEI质量分数为50% 时使PEEK结晶度达到最大。
相容共混物的 与组成的关系可以采用Fox、Porch、Gordon—Taylor和Couchman方程描述 6 J,图2为采用Fox和Porch方程描述的PEEK/PEI共混体系的与组成的关系。由图2可看出,实测 与组分的关系与Porch方程符合更好。
共混物的结晶行为
不同配比共混物的广角x 射线衍射(WAXD)图。由图3可发现,加入PEI后,PEEK在2 =30o左右的结晶衍射峰消失,表明PEI与PEEK之间存在相互作用,且随PEI用量的增加,PEEK的衍射峰强度减弱,峰形状变得不明显;当PEI质量分数为75%时,共混物的XRD图像与纯PEI的相似,表明共混体系的结晶度随PEI用量的增加而降低。
了一个直接比较各种聚合物结晶速率的统一尺度一结晶速率系数。当以降温速率中冷却聚合物时,结晶温度为 若以不同的速率中l、中2(其差为△中)降温,将引起
的相应变化△ 。。,则结晶速率常数定义为A@/AT ,它表示聚合物过冷产生1℃改变所要求的降温速率的改变。其值可由降温速率 对 作图的斜率(aa~/aT )求得,斜率越大表示结晶速率越快。
为此,将不同组成的PEEK/PEI共混物分别以5、10、30、40℃/min的速率降温,并求得各降温速率下的
。。,然后作中一 。。图,进行线性拟合,则可求出斜率,即结晶速率系数。表2是不同组成共混物的结晶速率系数.
随PEI用量的增加,共混物的整体结晶速率降低。由于随PEI用量的增加,PEEK的熔点降低,使得PEEK结晶的热力学驱动力降低;而且共混物的 随PEI的增加而升高。熔点降低和升高使PEEK结晶受到限制,因此随着时间的延长,PEEK虽仍旧能够结晶,但其结晶速率降低L4J。对共混体系结晶能力的比较,可以用过冷度△来衡量l】¨。△ 是指升温DSC曲线熔融峰温 。 与降温DSC曲线开始结晶温度 之差,△ 随降温速率
的变化可用线性方程表示:
△T
= P- +△ (1)
式中,截距△ 表示该聚合物所固有的结晶能力,是降温速率趋于0时的过冷度;斜率P表示这一过程的灵敏因子。△ 值越大,则结晶能力越低;斜率越大说明所测试样对降温速率的改变更加敏感。
为此,对PEEK/PEI共混体系分别以不同速率降温,求得△ ,作△ 一中图,进行线性拟合
,随PEI用量的增加,△
逐渐增大,表明共混体系的整体结晶能力随PEI用量的增加而减小。
采用DSC研究不同配比共混物在5 oC/min降温速率下的结晶性能,得到如图4所示的冷却结晶曲线。由图4可以看出,随PEI用量的增加,共混体系的
降低。由于随着PEI用量的增加,PEEK的熔点降低,而其 升高,从而使( 一 )降低,对PEEK链段排列造成阻碍[ ],且由表3可看出,共混物的结晶能力随PEI用量的增加而降低,因而需要在更低的温度下结晶。
结论
PEEK/PEI共混物完全相容,并与组成的关系符合Porch方程。PEEK/PEI相容主要是由于共混物中PEEK和PEI间的电荷转移相互作用占主导地位。随共混体系中PEI用量的增加,共混物的熔点、结晶度、整体结晶速率和结晶能力均降低;而PEEK的结晶度呈现先增加后减小的趋势;当PEI质量分数为50% 时,达到最大。
PEI 基础创新塑料(美国) 9075-BK1A151
Polyether imide
was prepared by sol-gel method in the presence of N-N-dimethylacetamide /
tetrahydrofuran (DMAc / THF) in the presence of ethyl orthosilicate (TEOS) PEI)
/ SiO2 composites. In the composites, when the SiO2 content is less than 20wt%,
the observation of transmission electron microscopy (TEM) and scanning electron
microscopy (SEM) shows that the SiO2 nanoparticles can be uniformly dispersed
and the particle size can be controlled between 80 and 300nm. The results of
differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)
show that the glass transition temperature (Tg) and thermal decomposition
temperature (Td) of PEI are obviously improved by the introduction of SiO2
nanoparticles. The effects of SiO2 content on the phase separation morphology
of the composites were investigated by scanning electron microscopy (SEM). The
results showed that the introduction of SiO2 nanoparticles could make PEI
dispersed phase size Reduced. The results of dynamic mechanical analysis (DMTA)
and impact test show that the use of PEI / SiO2 composite modified epoxy resin
can improve the modulus while improving the modulus.
ZHANG
Jing, SHI Wei-chao, XIE Xiao-ming (Key Laboratory of Advanced Materials,
Ministry of Education, Department of Chemical Engineering, Tsinghua University,
Beijing 100084)
Keywords:
sol - gel, polyetherimide, composite, epoxy resin
Epoxy
resin is a kind of high strength and excellent bonding performance, widely used
thermosetting engineering materials. But because of its high degree of
cross-linking in the curing process, so that the ability to move between the
molecular chain becomes smaller, resulting in brittle, low impact strength,
easy cracking and other issues, limiting its scope of application, so the epoxy
resin toughening Very necessary [1 ~ 4].
Adding
the thermoplastic polymer to the epoxy can usually increase the toughness of
the material, but at the same time may reduce the strength and thermal
stability of the material [5-7]. So in recent years the researchers will be
more attention to the use of good heat resistance, excellent mechanical
properties of thermoplastic engineering plastics to toughen the work of epoxy
resin, in order to achieve the improvement of matrix toughness while
maintaining high strength and thermal stability Sexual goals [8]. Commonly used
resins include polyethersulfone (PES) [9-11], polyether imide (PEI) [12,13],
polyimide (PI) [14], polycarbonate (PC) 15] and polyether ketone (PEK) [16] and
so on.
On
the other hand, if the introduction of uniformly dispersed inorganic
nanoparticles into the epoxy resin system, it is possible to simultaneously
improve its toughness, modulus and dimensional stability [17-20], but how to
achieve uniform dispersion of the nanoparticles in the polymer Has always been
a problem. Sol-gel method [21] (sol-gel) is one of the main methods for
preparing inorganic / organic polymer hybrid materials. The method refers to
the addition of an alkylene oxide or a metal salt to a sol (sol) which is
hydrolyzed under certain conditions to a sol (sol) and then is volatilized or
heated by a solvent to convert the sol into a network gel Process [22]. The
sol-gel method has a mild reaction condition and the process is easy to
control, facilitating the uniform mixing of the components. In the preparation
of inorganic / organic hybrid materials, the precursor is used to hydrolyze and
polycondeate the precursor in a co-soluble system using a co-solvent of the
precursor and the organic polymer in the presence of the polymer to obtain
inorganic nanoparticles in organic Polymeric dispersion in the polymer [23,24].
The
composites of inorganic particles and engineering plastics were prepared by sol
- gel method, and the epoxy resin was modified by the composite materials. It
was also possible to reflect the modification of epoxy resin by inorganic and
organic materials. In this paper, nano-SiO2 particles were fabricated in situ
in polyetherimide (PEI) solution by sol-gel method. The distribution of
particles in polymer solution and complex was observed by TEM and SEM
respectively. Furthermore, the PEI / SiO2 nanocomposites were introduced into
the epoxy resin, and the influence of the introduction of SiO2 on the phase
separation and mechanical properties was studied.
如需了解更多关于PEI 基础创新塑料(美国) 9075-BK1A151及 的详细信息,欢迎致电联系。
零风险购货10天无理由退换货
为了更好的服务客户,我公司现推出零风险采购方案,你在我公司购买的货物只要发货后10天内。你对货物有任何不满意都可以提出退换申请,在货物未拆封,不影响二次销售的情况下,我司将给你办理退换手续并承担运费,为你免去任何担忧。
PEI 基础创新塑料(美国) 9075-BK1A151
|