详细介绍: 分级浓缩型矿山专业水力旋流器主要技术参数沉降速度Ur也就很小,迁移到中央的油滴图4表示的是旋流器分离效率随入口流量的变化关系。从图4可得出与前面分析一致的结论,即当入口流量分别为4.33m3/h和3.47m3/h时,旋流器的分离效率较低。图中还表明,在本实验条件下,旋流器的分离效率随入口流量的增加而增加,当入口流量低于4.5m3/h时,分离效率随入口流量的降低而迅速降低,而当入口流量高于4.5m3/h时,分离效率随入口流量的增加而缓慢增加,入口流量在4.5~6.9m3/粒径随入口流量的增加而降低,分离效率随入口流量的增加而增加。整个旋流器以及旋流器各段的压力降均与入口流量成指数关系,都随入口流量的增加而增加。在旋流器的压力损失中,进口、旋流腔及大锥段所占比例,且基本不随入口流量的变化而变化;小锥段次之,并随入口流量的增大而增大;直管段的压力损失所占的比例最小,它随入口流量的增大而不断降低。液液分离水力旋流器是上世纪80年代初出现的新型油田地面工程分应修改。算例结果表明本文提出的计算旋流器内部切向速度的公式要比现有计算公式能更真实的反映旋流器内部流体的切向运动,为水力旋流器的工艺设计提供了可靠的理论基础。在水力旋流器内部的三维液体运动中,切向速度占据着最为重要的地位,这不仅是因为切向速度在数值上要远大于其他两向速度,更重要的是切向速度是产生离心力的基本要素,是水力旋流器各项工艺指标设计计算的基础。目前人们对水力旋流器切向速度分分级浓缩型矿山专业水力旋流器主要技术参数.人们对于旋流分离过程中颗粒的受力、运动状态及流场分布等的认识还不够深入,对于改进水力旋流器的结构设计和yh其操作运行不能有效地起到指导性的作用.为此,对颗粒在旋流器内的受力和运动进行了分析,并给出了颗粒的运动方程.(1)水力旋流器内的颗粒主要承受离心力、液体浮力和液体黏滞阻力的作用,其中黏滞阻力的计算最为复杂,与颗粒雷诺数所处区域(Stokes区、过渡区和牛顿区)相联系.(2)根据颗粒雷诺数大多满这里包括固-液-气三相同时分离、液-液-气同时分离以及固-液-液同时分离。在某些场合,要求使固-液-气三相同时分离,如石油工业中要求将油中的气和砂同时分离出来,水力旋流器则能满足这种要求。这种能完成三相同时分离的旋流器只要在液-气两相分离用旋流器的基础上稍加改进即可,这种改进主要是要将其底流中的固液相分开,即将液体中的砂粒除去。迄今尚未见有这方面的报导,该技术的硬件和软件均有待于进一分离性能进行了对比试验研究模具结构如图2所示。根据产品结构尺寸和本厂由供料系统、管道系统、螺杆泵、水力旋流器及测量装置5部分组成。试验过程中将料液按一定比例加入料罐中,搅拌混合基本均匀后,由螺杆泵加压,经流量计进入水力旋流器进行分离。分离后的含固体颗粒浓液由底流管线返回料罐,清液经溢流口管线返回料罐。试验用两种旋流器均采用有机玻璃制成,其结构如图2、3所示。为保证试验数据有可比性,两种旋供依据,也为进一步深入研究旋流器分离机理和yh结构设计提供试验依据。结果表明,旋流器内空气核在形成过程中,当锥角小时,底流口处出现消失现象,消失长度与进口流量有关;在贯通过程中,空气从溢流口被吸入,贯通后又从底流口被吸入;空气核尺寸、形状以及弯曲、扭曲的严重程度受旋流器锥角和操作参数的影响较大。为了减小空气核对流场和颗粒分离的影响,旋流器结构与操作参数之间应有一相匹配的最佳操作参数。水力平位置AG段,轴向速度的绝对值缓慢增加;在GB段盖面至溢流管的进口位置,中心轴线上轴向速度的绝对值急剧增大,并在溢流管的入口内部的一点达到一个极大值;在Bh段溢流管进口位置至柱段与锥段的交汇处,轴向速度急剧减小,在HC段即锥段内,轴向速度呈渐进线减少;在CD段即第二锥段内,轴向速度加速减少且反向加速增大,达到一个极大向下的轴向速度后,在底流直管段缓慢减少并排出水力旋流器。以锥体轴线为分级浓缩型矿山专业水力旋流器主要技术参数的三种模式一般都不利于旋流器的工作。在模型A中,碰撞的结果是较大颗粒将一部分动量传递给较小的颗粒,从而导致两种颗粒之间的速度差变小,这将扰乱颗粒按粒度在径向的规律性分布,如果这种情况恰好发生在决定分离粒度的零速包络面附近,则可能降低分离的精确性;在模型B中,大颗粒与微细颗粒正面碰撞的结果使微细颗粒粘附到大颗粒表面上,于是本应进人溢流的物料可能混人器壁边界层,其能否再次向内运动则取决于边界喷射形状失常及沉砂量小、溢流量大等情况,都要及时检查排除。(6)如果给料是磁选产物,必须预先脱磁处理。5结论水力旋流器因其分级效率高、处理量大、占地面积小等优势,在矿物分级、脱水等领域具有广阔的应用前景。但在具体选用中,必须充分考虑工艺特点及物料性质。在球磨机-水力旋流器闭路磨矿作业生产过程中,旋流器压力和泵池液位之间存在耦合关系,这为旋流器控制带来困难。为了解决以上问题,本文分析了旋直径沿高度的变化小;再其次,空气核沿旋流器几何中心偏摆,进口流量小时上部偏摆大,进口流量大时,底流口附近偏摆大。通过分析发现,若要减小空气核对流场和分离的影响,则每一种结构的旋流器都有一对应的最佳操作参数(进口流量),在此条件下空气核既不会产生过大的尺寸,也不会出现过分严重的/偏摆0现象。从图5还可以看出,当形成稳定的空气核后,流量为2、3m3/h时其形状类似于正弦曲线;流量为4m3/h时,在锥体部分产生分级浓缩型矿山专业水力旋流器主要技术参数2mm旋流器,处理能力分别为2100m3/h和2400m3/h。4.2结构和型式多样化结构和型式的改进主要是为了提高分级效率和降低能耗,还为了适应不同用途要求而制造了不同型式的旋流器。在局部结构改进方面,旋流器的锥体由单一锥度改为不同锥角的多锥体或多锥多柱体相结合,也有内凸型式的,这样会有助于提高分级效率。圆柱体被制成带有螺旋沟槽或逐渐扩大直径型式的。给料管由简单的切线连结改为渐开线连结或螺旋线连结,以便
聚氨酯弹性体制作旋流器具有耐腐蚀、抗老化、质量轻等优点,有利于室外及野外作业。在石油钻探作业中,使用旋流器除砂与脱泥,对钻井泥浆净化。旋流器是一个带有圆柱部分的锥形容器。锥体上部内圆锥体部分叫液腔。圆锥体外侧有一进液管,以切线方向和液腔连通
产能力和分级粒度计算式的基础上,经过数学处理导出供初步设计计算旋流器基本直径的半经验法求出当设计所需旋流器的直径结构参数操作参数和实用台数确定后,还需对其沉砂口的负荷能力进行检查沉砂口的负荷能力主要取决于其沉砂口直径和沉砂浓度,特别是沉砂口直径沉砂口正常生产的标志是沉砂排出呈的伞状夹角,大于该夹角者说明其沉砂浓度过低,溢流过细;小于该夹角者说明其沉砂浓度过大,溢流跑粗旋流器的最求的进口压力一般小于静态水力旋流器所要求的进口压力,这是因为在动态水力旋流器中不需要克服因复杂的几何结构所引起的压力降。排出比率的影响在动态水力旋流器中也不重要,而关键的参数是排出流量,在动态水力旋流器中对整个进入流量而言排出流量是个常数。因此,排出流量可作为优选参数。对动态水力旋流器来说,旋转转速是关键的参数。高的旋转转速产生较高的离心力,在给定的流量下可得到较好的除油效率。然而,分级浓缩型矿山专业水力旋流器主要技术参数 |